
Tanium™ API Gateway User Guide
Version 1.1.15

December 14, 2021

© 2021 Tanium Inc. All Rights Reserved Page 2

The information in this document is subject to change without notice. Further, the information provided in this document is provided “as

is” and is believed to be accurate, but is presented without any warranty of any kind, express or implied, except as provided in Tanium’s

customer sales terms and conditions. Unless so otherwise provided, Tanium assumes no liability whatsoever, and in no event shall

Tanium or its suppliers be liable for any indirect, special, consequential, or incidental damages, including without limitation, lost profits

or loss or damage to data arising out of the use or inability to use this document, even if Tanium Inc. has been advised of the possibility

of such damages.

Any IP addresses used in this document are not intended to be actual addresses. Any examples, command display output, network

topology diagrams, and other figures included in this document are shown for illustrative purposes only. Any use of actual IP addresses

in illustrative content is unintentional and coincidental.

Please visit https://docs.tanium.com for the most current Tanium product documentation.

This documentation may provide access to or information about content, products (including hardware and software), and services

provided by third parties (“Third Party Items”). With respect to such Third Party Items, Tanium Inc. and its affiliates (i) are not

responsible for such items, and expressly disclaim all warranties and liability of any kind related to such Third Party Items and (ii) will

not be responsible for any loss, costs, or damages incurred due to your access to or use of such Third Party Items unless expressly set

forth otherwise in an applicable agreement between you and Tanium.

Further, this documentation does not require or contemplate the use of or combination with Tanium products with any particular Third

Party Items and neither Tanium nor its affiliates shall have any responsibility for any infringement of intellectual property rights caused

by any such combination. You, and not Tanium, are responsible for determining that any combination of Third Party Items with Tanium

products is appropriate and will not cause infringement of any third party intellectual property rights.

Tanium is committed to the highest accessibility standards for our products. To date, Tanium has focused on compliance with U.S.

Federal regulations - specifically Section 508 of the Rehabilitation Act of 1998. Tanium has conducted 3rd party accessibility

assessments over the course of product development for many years and has most recently completed certification against the WCAG

2.1 / VPAT 2.3 standards for all major product modules in summer 2021. In the recent testing the Tanium Console UI achieved supports

or partially supports for all applicable WCAG 2.1 criteria. Tanium can make available any VPAT reports on a module-by-module basis as

part of a larger solution planning process for any customer or prospect.

As new products and features are continuously delivered, Tanium will conduct testing to identify potential gaps in compliance with

accessibility guidelines. Tanium is committed to making best efforts to address any gaps quickly, as is feasible, given the severity of the

issue and scope of the changes. These objectives are factored into the ongoing delivery schedule of features and releases with our

existing resources.

Tanium welcomes customer input on making solutions accessible based on your Tanium modules and assistive technology

requirements. Accessibility requirements are important to the Tanium customer community and we are committed to prioritizing these

compliance efforts as part of our overall product roadmap. Tanium maintains transparency on our progress and milestones and

welcomes any further questions or discussion around this work. Contact your sales representative, email Tanium Support at

support@tanium.com, or email accessibility@tanium.com to make further inquiries.

Tanium is a trademark of Tanium, Inc. in the U.S. and other countries. Third-party trademarks mentioned are the property of their

respective owners.

© 2021 Tanium Inc. All rights reserved.

© 2021 Tanium Inc. All Rights Reserved Page 3

Table of contents

API Gateway overview 6

Query explorer 6

Query variables 7

Schema reference 7

Authentication 8

Rate limits 8

Root endpoint 8

Example cURL syntax 8

Pagination 9

Cursors 9

Connection and edges 9

Arguments 10

Filters 10

Simple filters 11

Compound filters 12

Negated filters 12

Field filters 12

Integration with other Tanium products 14

Getting started with API Gateway 15

Step 1: Review the requirements 15

Step 2: Install API Gateway 15

Step 3: Install any integrated solutions that use the API Gateway 15

Step 4: Grant API Gateway permissions 15

Step 5: Test queries through the Tanium™ Console 15

Step 6: (Optional) Test queries through cURL 15

Step 7: Explore sample queries and mutations 15

API Gateway requirements 16

© 2021 Tanium Inc. All Rights Reserved Page 4

Tanium dependencies 16

Tanium™ Module Server 17

Endpoints 17

Host and network security requirements 17

Ports 17

Security exclusions 17

User role requirements 18

Installing API Gateway 20

Before you begin 20

Import API Gateway 20

Troubleshoot issues 20

Using API Gateway 21

Test a query in the Tanium Console 21

Troubleshooting API Gateway 23

Collect logs 23

Queries return unexpected results or errors 23

Uninstall API Gateway 23

Contact Tanium Support 24

Reference: API Gateway examples 25

General examples 25

Get server time 25

Get endpoints 25

Get endpoints IDs from Tanium Data Service 27

Get rich endpoint data 28

Get a set of endpoints 31

Unregistered sensor query 34

Unregistered parameterized sensor query 36

Paginated query 39

Software characteristics query with filter 41

Action examples 42

© 2021 Tanium Inc. All Rights Reserved Page 5

Create action (subset of endpoints) 42

Get action details 42

Deploy examples 44

Deploy a package to all endpoints 44

Get package details 44

Get Deploy packages 48

Get software deployment status 48

Direct Connect examples 49

Open a connection to an endpoint 49

Ping the connection to an endpoint 50

Get data from an endpoint 50

Get process from an endpoint 51

Get alerts from an endpoint 51

Stop a process on an endpoint 53

Close connection to an endpoint 53

© 2021 Tanium Inc. All Rights Reserved Page 6

API Gateway overview
Tanium™ API Gateway provides a single and stable API integration point for various Tanium solutions. It is designed for Tanium

partners and customers interested in building integrated solutions with the Tanium™ Core Platform.

Query explorer
API Gateway includes an interactive query explorer that you can use to write and run queries and mutations in the Tanium Console.

Use the query explorer to try new queries and discover what data is available.

You can find the query explorer on the API Gateway Overview page:

If the query explorer does not appear on the API Gateway Overview page, click Customize Page and make sure the

Query Explorer option is selected.

© 2021 Tanium Inc. All Rights Reserved Page 7

Query variables

If a query or mutation uses variables, expand the QUERY VARIABLES pane and include the variables in the pane that expands.

Schema reference

API Gateway contains a schema reference that documents all queries, mutations, and objects that are available in API Gateway. The

schema reference is generated directly from the schema; refer to the schema reference in API Gateway for the most up-to-date

documentation.

To view the schema reference in the query explorer, click Docs to expand the Documentation Explorer pane of the query explorer.

© 2021 Tanium Inc. All Rights Reserved Page 8

The query explorer uses the GraphiQL interactive browser to send GraphQL queries and mutations to the Tanium

Server. For more information about the options that are available in GraphiQL, see https://graphql.org/learn/.

Authentication
Requests that are sent from the query explorer in the Tanium Console are authenticated and authorized with the session ID of the

user who is signed in. The Tanium Server uses the role-based access control (RBAC) permissions of the user account to determine

which content you can query and mutate.

Requests that are sent from outside the Tanium Console are authenticated and authorized with either session IDs or API tokens. You

must include an API token or session ID in the authorization header of all requests that are sent to API Gateway. API Gateway uses

the RBAC permissions of the requesting user to determine content access for all queries and mutations. For an example cURL query

that shows the authorization header, see Example cURL syntax on page 8.

Use API tokens to send requests through API Gateway instead of session IDs. While session IDs time out after five

minutes of inactivity, you can set a longer timeout for API tokens. You can create API tokens in the Tanium Console

or through the Tanium Core Platform REST API. For more information, see Tanium Console User Guide: Managing

API tokens.

When requests are sent outside the Tanium Console, make sure to use the correct URL to send requests. See Root

endpoint on page 8 and Example cURL syntax on page 8 for examples.

Rate limits
API Gateway has no specific rate limits.

Root endpoint
To send queries and mutations outside the Tanium Console, use the following address:

https://<server>/plugin/products/gateway/graphql

Example cURL syntax

curl --request POST \

--url https://localhost/plugin/products/gateway/graphql \

--header 'Content-Type: application/json' \

--header 'session: token-356d5f5bbb3671f28e24f65be3bdd54d9d81001ca823efaabc5fbff251' \

--data '{"query":"{\n now\n}\n"}'

https://graphql.org/learn/
https://docs.tanium.com/platform_user/platform_user/console_api_tokens.html
https://docs.tanium.com/platform_user/platform_user/console_api_tokens.html

© 2021 Tanium Inc. All Rights Reserved Page 9

Pagination
Queries that return many results are paginated to reduce resource utilization. API Gateway uses the standard Relay GraphQL

pagination specification to provide users the option to explicitly control pagination.

Paginated queries return a connection type that is prefixed with the name of the data type, such as EndpointConnection. Queries

accept standard arguments to control the pagination.

Example of a paginated query:

{

 endpoints {

 edges {

 node {

 id

 serialNumber

 }

 }

 pageInfo {

 hasNextPage

 endCursor

 }

 }

}

Cursors

Use cursors to control relay pagination. Cursors are opaque strings that point to records within queried collections, and can be used

to request the records after the cursor. All collections support forward traversal, and some also support backward traversal.

Cursors are valid only for the query for which they were returned. Cursors are generally valid for five minutes after their most recent

use. Any queries that deviate from this policy are documented in the query field.

Connection results are stable and consistent when traversed with cursors unless documented in the query field.

Connection and edges

The connection includes an edge field that returns a list of typed edges, such as EndpointEdge. Each edge contains at least two

fields:

l A node field with the actual data type, such as Endpoint

l A cursor field with a cursor for the record

The connection type also includes a pageInfo field that contains at least two fields:

https://relay.dev/graphql/connections.htm
https://relay.dev/graphql/connections.htm

© 2021 Tanium Inc. All Rights Reserved Page 10

l hasNextPage indicates if there are more records

l endCursor is the cursor of the last record in the returned page, if any

Some connection types feature other metadata, such as totalRecords.

Arguments

Paginated queries support at least two arguments: first indicates the number of records to return, and after is the value of the

record cursor that precedes the records in the requested page. When fully paginated, this value is the same as the endCursor value

from the previous page. Both arguments have sensible defaults.

Paginated queries that support backward traversal allow two corresponding arguments: last and before.

A single query supports either forward or backward traversal, but not both. The server returns an error response for

queries with arguments for both forward and backward traversals.

When a paginated request extends beyond the collection, the query returns only the available results.

Example of a request for a page of data within a collection:

{

 endpoints(after: "the-cursor-value", first: 10) {

 edges {

 node {

 id

 serialNumber

 }

 }

 pageInfo {

 hasNextPage

 endCursor

 }

 }

}

Filters
Most queries that return multiple results provide support to filter the results. Such queries provide a filter argument.

© 2021 Tanium Inc. All Rights Reserved Page 11

Simple filters

Simple filters are single filters that constrain the values of fields that participate in the query. You can specify simple filters in the

path property with a period to separate levels in the graph starting at the record type. For example:

{

 endpoints(filter: {path: "primaryUser.email", value: "user@example.com"}) {

 edges {

 node {

 id

 primaryUser {

 email

 }

 }

 }

 }

}

The query does not need to return the filtered path. Not all field paths are filterable. Refer to the schema to see which paths cannot

be filtered.

Simple filters must also contain a string value property.

You can specify an operator in the op property, which is an enumerated type and defaults to the equality operator. For example:

{

 endpoints(filter: {path: "processor.logicalProcessors", value: "4", op: GTE}) {

 edges {

 node {

 id

 }

 }

 }

}

Not all operators are valid for all fields.

© 2021 Tanium Inc. All Rights Reserved Page 12

Compound filters

Compound filters contain multiple simple or compound filters that appear in the filters property. By default, all child filters must

pass for a record to be included. If the or argument is given with a true value, then a record is included if any child filter matches.

Example of a simple compound filter:

{

 endpoints(filter: {filters: [{path: "serialNumber" value: "x"}, {path: "name", value: "y"}]})

{

 edges {

 node {

 id

 }

 }

 }

}

Negated filters

You can negate both simple and compound filters with a negated property of true. For example, the following query returns

endpoints whose serial number does not contain the letter x:

{

 endpoints(filter: {path: "serialNumber", value: "x", negated: true}) {

 edges {

 node {

 id

 }

 }

 }

}

Field filters

Filters apply to the entire record. Some records contain fields that are collections; you can also filter these fields. When you filter a

field, the filter applies to both the child collection and to the records. For example, if you search for endpoints with an installed

application named Tanium Client with a filter on the field, API Gateway returns only those endpoints with such an application, as

well as only the matching application:

© 2021 Tanium Inc. All Rights Reserved Page 13

{

 endpoints {

 edges {

 node {

 installedApplications(filter: {path: "name", value: "Tanium Client"}) {

 name

 version

 }

 }

 }

 }

}

Field filters can be simple or compound. Compound filters are limited to one level of children that must use the equality operator,

and require all child filters. For example:

{

 endpoints {

 edges {

 node {

 installedApplications(

 filter: {

 filters: [

{path: "name", value: "Tanium Client"},

{path: "version": value: "7.5.0.0"}

]

 }

) {

 name

 version

 }

 }

 }

 }

}

© 2021 Tanium Inc. All Rights Reserved Page 14

Integration with other Tanium products
The following solutions are supported by API Gateway:

l Tanium Core Platform

o Actions

o Tanium™ Data Service

o Tanium™ Direct Connect

o Packages

l Tanium™ Blob

l Tanium™ Deploy

l Tanium™ Performance

© 2021 Tanium Inc. All Rights Reserved Page 15

Getting started with API Gateway

Step 1: Review the requirements
Review the system, network, security, and user role requirements: see API Gateway requirements on page 16.

Step 2: Install API Gateway
See Installing API Gateway on page 20.

Step 3: Install any integrated solutions that use the API Gateway
Import any integrated solutions that you want to use. For information on which Tanium solutions use the API Gateway, see

Integration with other Tanium products on page 14.

Step 4: Grant API Gateway permissions
Grant permissions to users to use API Gateway. Uses with the Administrator reserved role have access by default. See User role

requirements on page 18.

Step 5: Test queries through the Tanium™ Console
Use the interactive query explorer to test queries in the Tanium Console. See Test a query in the Tanium Console on page 21.

Step 6: (Optional) Test queries through cURL
Test queries through cURL. See Using API Gateway on page 21.

Step 7: Explore sample queries and mutations
Explore sample queries and mutations to see what you can do with API Gateway. See Reference: API Gateway examples on page 25.

© 2021 Tanium Inc. All Rights Reserved Page 16

API Gateway requirements
Review the requirements before you install and use API Gateway.

Tanium dependencies

Component Requirement

Tanium™ Core

Platform

7.4.4 or later

Tanium™

Console UI

2.0 or later

Tanium content API Gateway uses sensors that are included in the Core Content and Core AD Query content packs.

Tanium

solutions

Other Tanium solutions are required for API Gateway to function (required dependencies) or for specific API Gateway features

to work (feature-specific dependencies).

If you select Tanium Recommended Installation when you import API Gateway, the Tanium Server automatically imports all

your licensed solutions at the same time. See Tanium Console User Guide: Import all modules and services.

If you select only API Gateway to import, the server automatically imports the latest available versions of any required

dependencies that are missing. If some required dependencies are already imported but their versions are earlier than the

minimum required for API Gateway, the server automatically updates those dependencies to the latest available versions. API

Gateway has the following required dependencies at the specified minimum versions:

l Tanium Interact 2.9.83 or later

l Tanium System User 1.0.40 or later

The server does not automatically import or update feature-specific dependencies. You must import or update those manually.

See Tanium Console User Guide: Import, re-import, or update specific solutions. API Gateway has the following feature-specific

dependencies at the specified minimum versions:

l Tanium Blob 1.0.6 or later

l Tanium Direct Connect 1.10.39 or later

l Tanium Deploy 2.9.123 or later

l Tanium Performance 1.10.57 or later

License The license entitlement for the Tanium Core Platform includes the API Gateway.

https://docs.tanium.com/platform_user/platform_user/console_solutions.html#import_all_modules
https://docs.tanium.com/platform_user/platform_user/console_solutions.html#import_specific_modules

© 2021 Tanium Inc. All Rights Reserved Page 17

Tanium™ Module Server
API Gateway is installed and runs as a service on the Module Server host computer. The impact on the Module Server is minimal and

depends on usage.

For information about Module Server sizing in a Windows deployment, see Tanium Core Platform Deployment Guide for Windows:

Host system sizing guidelines.

Endpoints
API Gateway does not directly deploy packages to endpoints. However, you can use API Gateway to deploy packages through

Tanium Deploy. For Tanium Deploy endpoint requirements, see Tanium Deploy User Guide: Endpoints.

For Tanium Client operating system support, see Tanium Client Management User Guide: Client version and host system

requirements.

Host and network security requirements
Specific ports and processes are needed to run API Gateway.

Ports

The following ports are required for API Gateway communication.

Source Destination Port Protocol Purpose

Module Server Module Server

(loopback)

17600 TCP Internal purposes, not externally accessible

Configure firewall policies to open ports for Tanium traffic with TCP-based rules instead of application identity-

based rules. For example, on a Palo Alto Networks firewall, configure the rules with service objects or service groups

instead of application objects or application groups.

Security exclusions

If security software is in use in the environment to monitor and block unknown host system processes, your security administrator

must create exclusions to allow the Tanium processes to run without interference. For a list of all security exclusions to define across

Tanium, see Tanium Core Platform Deployment Reference Guide: Host system security exclusions.

Target
Device

Notes Exclusion
Type

Exclusion

Module

Server

Process <Module Server>\services\gateway-service\TaniumGatewayService.exe

API Gateway security exclusions

https://docs.tanium.com/platform_install/platform_install/reference_host_system_sizing_guidelines.html#Tanium_Module_Server
https://docs.tanium.com/platform_install/platform_install/reference_host_system_sizing_guidelines.html#Tanium_Module_Server
https://docs.tanium.com/deploy/deploy/requirements.html#endpoints
https://docs.tanium.com/client/client/requirements.html#Client_host_system_requirements
https://docs.tanium.com/client/client/requirements.html#Client_host_system_requirements
https://docs.tanium.com/platform_deployment_reference/platform_deployment_reference/security_exceptions.html

© 2021 Tanium Inc. All Rights Reserved Page 18

User role requirements
The following tables list the role permissions required to use API Gateway. For more information about role permissions and

associated content sets, see Tanium Console User Guide: Managing RBAC.

Permission API Gateway User1 Gateway Service Account Gateway Service Account -
All Content Sets

Gateway Api

Access API Gateway

EXECUTE

Gateway Service Account

Provides access for the API

Gateway service.

EXECUTE

1 This role provides module permissions for Tanium Interact. You can view which Interact permissions are granted to this role in the Tanium

Console. For more information, see Tanium Interact User Guide: User role requirements.

API Gateway user role permissions

Permission Permission Type API Gateway
User

Gateway Service
Account

Gateway Service Account - All
Content Sets

Action Group Administration

READ

WRITE

Computer Group Administration

READ

Global Settings Administration

READ

Sensor Platform Content

READ1

Token - Use Administration

SPECIAL

Provided API Gateway administration and platform content permissions

https://docs.tanium.com/platform_user/platform_user/console_rbac_overview.html
https://docs.tanium.com/interact/interact/requirements.html#user_roles

© 2021 Tanium Inc. All Rights Reserved Page 19

Permission Permission Type API Gateway
User

Gateway Service
Account

Gateway Service Account - All
Content Sets

Plugin Platform Content

EXECUTE2

READ2

1 This permission applies to all content sets.

2 This permission applies to the Interact content set.

Provided API Gateway administration and platform content permissions (continued)

© 2021 Tanium Inc. All Rights Reserved Page 20

Installing API Gateway
Use the Tanium Console Solutions page to install API Gateway and choose either automatic or manual configuration:

l Automatic configuration (Tanium Core Platform 7.4.2 or later only): API Gateway is installed with any required

dependencies and other selected products. This option is the best practice for most deployments. For more information

about the automatic configuration for API Gateway, see Tanium Console User Guide: Import all modules and services.

l Manual configuration: Manually install API Gateway and the required dependencies. For more information, see Import API

Gateway on page 20.

Before you begin
l Read the release notes.

l Review the API Gateway requirements on page 16.

l Assign the correct roles to users for API Gateway. Review the User role requirements on page 18.

o To import the API Gateway solution, you must be assigned the Administrator reserved role.

Import API Gateway
Perform the following steps to install the API Gateway solution on the Tanium Server.

If you have multiple Tanium Servers in an active-active configuration, you only need to perform these steps on one

Tanium Server if you have Tanium Core Platform 7.4.3.1204 or later.

1. Sign in to the Tanium Console with an account that has the Administrator reserved role.

2. From the Main menu, go to Administration > Configuration > Solutions.

3. In the Content section, select the checkbox for API Gateway and click Install.

If you need to install any prerequisite Tanium solutions or content, select the corresponding checkboxes for

those solutions as well.

4. Review the content to import and click Begin Install.

Troubleshoot issues
If you experience issues with installing API Gateway, see Queries return unexpected results or errors on page 23.

https://docs.tanium.com/platform_user/platform_user/console_solutions.html#import_all_modules
https://kb.tanium.com/Category:Tanium_Shared_Services

© 2021 Tanium Inc. All Rights Reserved Page 21

Using API Gateway
Use API Gateway to build API-based integrations with the Tanium Core Platform. This service consolidates information from multiple

Tanium modules into a unified view of information on the endpoints in the environment. API Gateway intelligently routes requests

to the services and sources that provide the most recent information and the most reliable mutations.

API Gateway uses GraphQL to request data (queries) and to make changes (mutations). With GraphQL, you can compose queries in

API Gateway to retrieve the exact data that you want as well as filter the results to a set of endpoints.

Use API Gateway to:

l Query endpoints through the Tanium Server, or access data through Tanium Data Service

l Create, delete, and query actions

l Query packages

l Open a connection to an endpoint through Tanium Direct Connect and retrieve data from the endpoint

For examples of available functions, see Reference: API Gateway examples on page 25.

Test a query in the Tanium Console
To access the query explorer in the Tanium Console and run a query, perform the following steps:

1. From the Main menu, go to Administration > Shared Services > API Gateway.

2. Enter a query in the query pane. For example, paste the following query to get the time from the Tanium Server:

{

 now

}

If the query explorer does not appear on the API Gateway Overview page, click Customize Page and make

sure the Query Explorer option is selected.

3. (Optional) If a query or mutation uses variables, expand the QUERY VARIABLES pane and include the variables in the pane

that expands.

4. Click Execute Query .

© 2021 Tanium Inc. All Rights Reserved Page 22

API Gateway sends the query to the server and returns the response in the results pane.

For more information on the query explorer, see Query explorer on page 6.

© 2021 Tanium Inc. All Rights Reserved Page 23

Troubleshooting API Gateway
If API Gateway is not performing as expected, you might need to troubleshoot issues.

Collect logs
The information is saved as a ZIP file that you can download with your browser.

1. From the API Gateway Overview page, click Help , then the Troubleshooting tab.

2. Click Download Support Package.
A tanium-api-gateway-support-[timestamp].zip file downloads to the local download directory.

3. Contact Tanium Support to determine the best option to send the ZIP file. For more information, see Contact Tanium Support

on page 24.

Tanium API Gateway maintains logging information in the gateway-service.log file in the \Program

Files\Tanium\Tanium Module Server\services\gateway-files\logs\ directory.

Queries return unexpected results or errors
l The API Gateway service redirects queries and mutations to other Tanium solutions. If API Gateway returns unexpected

results or errors, make sure that all prerequisites are installed at the minimum recommended version. For information, see

API Gateway requirements on page 16.

l If all queries and mutations return a 502 Gateway Timeout error, make sure the Tanium System User service and the

Tanium API Gateway service are running on the Tanium Module Server.

l If you recently installed API Gateway or the System User service, restart the Tanium Module Server.

l Queries and mutations that use the eid element require Interact 2.9 or later.

Uninstall API Gateway
If you need to uninstall API Gateway, perform the following steps.

Consult with Tanium Support before you uninstall or reinstall API Gateway.

1. Sign in to the Tanium Console as a user with the Administrator role.

2. From the Main menu, go to Administration > Configuration > Solutions.

3. In the Content section, select the API Gateway row and click Uninstall.

4. Review the summary and click Yes to proceed with the uninstallation.

5. When prompted to confirm, enter your password.

© 2021 Tanium Inc. All Rights Reserved Page 24

The uninstall does not remove the API Gateway log from the Tanium Module Server. To remove the log after the

uninstall completes, manually delete the \Program Files\Tanium\Tanium Module

Server\services\gateway-files\ directory.

Contact Tanium Support
To contact Tanium Support for help, sign in to https://support.tanium.com.

https://support.tanium.com/

© 2021 Tanium Inc. All Rights Reserved Page 25

Reference: API Gateway examples
Use the following query examples to learn about the functionality and syntax of queries and mutations in API Gateway.

l General examples on page 25

l Action examples on page 42

l Deploy examples on page 44

l Direct Connect examples on page 49

General examples
The following queries retrieve data from the endpoints in your environment.

Get server time

The following query retrieves the local time from the Tanium Server.

{

 now

}

Example response:

{

 "data": {

 "now": "2021-11-08T19:22:03Z"

 }

}

Get endpoints

The following query retrieves known endpoints from the Tanium Server.

{

 endpoints(source: {ts: {expectedCount: 1, stableWaitTime: 10}}) {

© 2021 Tanium Inc. All Rights Reserved Page 26

 edges {

 node {

 computerID

 name

 serialNumber

 ipAddress

 }

 }

 }

}

Example response:

{

 "data": {

 "endpoints": {

 "edges": [

{

 "node": {

 "computerID": "937672696",

 "name": "ubuntu-test",

 "serialNumber": "Not Specified",

 "ipAddress": "10.168.20.30"

 }

 },

{

 "node": {

 "computerID": "1867570226",

 "name": "CentOS-test-1",

 "serialNumber": "Not Specified",

 "ipAddress": "10.168.20.40"

 }

 },

{

© 2021 Tanium Inc. All Rights Reserved Page 27

 "node": {

 "computerID": "2711217959",

 "name": "CentOS-test-2",

 "serialNumber": "Not Specified",

 "ipAddress": "10.168.20.50"

 }

 }

]

 }

 }

}

Get endpoints IDs from Tanium Data Service

The following query retrieves the all endpoint IDs from Tanium Data Service.

{

 endpoints {

 edges {

 node {

 id

 }

 }

 }

}

Example response:

{

 "data": {

 "endpoints": {

 "edges": [

{

 "node": {

© 2021 Tanium Inc. All Rights Reserved Page 28

 "id": "12345"

 }

 },

{

 "node": {

 "id": "54321"

 }

 },

{

 "node": {

 "id": "21212"

 }

 }

]

 }

 }

}

Get rich endpoint data

The following query demonstrates using nested fields to retrieve categorized endpoint data.

The first:2 argument retrieves two records; set this value higher to retrieve more records at a time. For more

information on pagination arguments, see Using API Gateway on page 21.

{

 endpoints (first:2) {

 edges {

 node {

 name

 computerID

 ipAddress

 isVirtual

 chassisType

© 2021 Tanium Inc. All Rights Reserved Page 29

 systemUUID

 domainName

 os {

 name

 platform

 generation

 }

 processor {

 architecture

 cacheSize

 consumption

 cpu

 family

 manufacturer

 speed

 }

 lastLoggedInUser

 }

 }

 pageInfo {

 startCursor

 endCursor

 hasNextPage

 }

 }

}

Example response:

{

 "data": {

 "endpoints": {

 "edges": [

{

© 2021 Tanium Inc. All Rights Reserved Page 30

 "node": {

 "name": "Test-01",

 "computerID": "1234567890",

 "ipAddress": "10.20.30.40",

 "isVirtual": false,

 "chassisType": "TSE-Error: Unknown - dmidecode unavailable",

 "systemUUID": "TSE-Error: Unknown - dmidecode unavailable",

 "domainName": "(none)",

 "os": {

 "name": "Red Hat Enterprise Linux Server release 5.11 (Tikanga)",

 "platform": "Linux",

 "generation": "Red Hat Enterprise Linux 5"

 },

 "processor": {

 "architecture": "x86_64",

 "cacheSize": "16384 KB",

 "consumption": "9.9 %",

 "cpu": "Intel Core Processor (Haswell, no TSX, IBRS)",

 "family": "6",

 "manufacturer": "GenuineIntel",

 "speed": "2600 Mhz"

 },

 "lastLoggedInUser": "reboot"

 }

 },

{

 "node": {

 "name": "Test-02",

 "computerID": "3216549870",

 "ipAddress": "10.20.30.50",

 "isVirtual": true,

 "chassisType": "Virtual",

 "systemUUID": "[no results]",

 "domainName": "(none)",

© 2021 Tanium Inc. All Rights Reserved Page 31

 "os": {

 "name": "CentOS Linux release 8.4.2105",

 "platform": "Linux",

 "generation": "CentOS 8"

 },

 "processor": {

 "architecture": "x86_64",

 "cacheSize": "35840 KB",

 "consumption": "18.6 %",

 "cpu": "Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz",

 "family": "6",

 "manufacturer": "GenuineIntel",

 "speed": "2400 Mhz"

 },

 "lastLoggedInUser": "tester-5"

 }

 }

],

 "pageInfo": {

 "startCursor": "4267468:0",

 "endCursor": "4267468:1",

 "hasNextPage": true

 }

 }

 }

}

Get a set of endpoints

The following query retrieves a set of endpoints. The query demonstrates the use of the sensorReadings field and contains a filter

argument to retrieve endpoints whose names contain the letter a. The results are paginated to 3 records.

{

 endpoints(first: 3, filter: {op: MATCHES, path: "name", value: "a.*"}) {

© 2021 Tanium Inc. All Rights Reserved Page 32

 edges {

 node {

 name

 ipAddress

 sensorReadings(sensors: [{name: "EID Last Seen"}]) {

 columns {

 name

 values

 }

 }

 }

 }

 }

}

Example response:

{

 "data": {

 "endpoints": {

 "edges": [

{

 "node": {

 "name": "test-1",

 "ipAddress": "10.20.20.30",

 "sensorReadings": {

 "columns": [

{

 "name": "EID Last Seen",

 "values": [

 "Mon, 08 Nov 2021 21:29:28 +0000"

]

 }

]

© 2021 Tanium Inc. All Rights Reserved Page 33

 }

 }

 },

{

 "node": {

 "name": "test-2",

 "ipAddress": "10.20.20.250",

 "sensorReadings": {

 "columns": [

{

 "name": "EID Last Seen",

 "values": [

 "Mon, 08 Nov 2021 21:29:28 +0000"

]

 }

]

 }

 }

 },

{

 "node": {

 "name": "test-3",

 "ipAddress": "10.170.10.3",

 "sensorReadings": {

 "columns": [

{

 "name": "EID Last Seen",

 "values": [

 "Mon, 08 Nov 2021 21:17:17 +0000"

]

 }

]

 }

 }

© 2021 Tanium Inc. All Rights Reserved Page 34

 }

]

 }

 }

}

Unregistered sensor query

The following query retrieves the operating system platform from all endpoints.

In API Gateway, a sensor is unregistered if the sensor is not represented by a named field in the API Gateway

schema. This has no correlation to registering sensors in Tanium Data Service.

{

 endpoints {

 edges {

 node {

 id

 name

 sensorReadings(sensors: [{name: "OS Platform"}]) {

 columns {

 name

 values

 }

 }

 }

 }

 }

}

Example response:

{

© 2021 Tanium Inc. All Rights Reserved Page 35

 "data": {

 "endpoints": {

 "edges": [

{

 "node": {

 "id": "12345",

 "name": "Test-01",

 "sensorReadings": {

 "columns": [

{

 "name": "OS Platform",

 "values": [

 "Linux"

]

 }

]

 }

 }

 },

{

 "node": {

 "id": "54321",

 "name": "Test-03",

 "sensorReadings": {

 "columns": [

{

 "name": "OS Platform",

 "values": [

 "Linux"

]

 }

]

 }

 }

© 2021 Tanium Inc. All Rights Reserved Page 36

 }

]

 }

 }

}

Unregistered parameterized sensor query

The following query checks to see if each endpoint contains the C:\Windows\py.exe file.

In API Gateway, a sensor is unregistered if the sensor is not represented by a named field in the API Gateway

schema. This has no correlation to registering sensors in Tanium Data Service.

{

 endpoints {

 edges {

 node {

 name

 id

 sensorReadings(

 sensors: [{name: "File Exists", params: [{name: "file", value:

"C:\\Windows\\py.exe"}]}]

) {

 columns {

 sensor {

 name

 params {

 name

 value

 }

 }

 values

 }

 }

© 2021 Tanium Inc. All Rights Reserved Page 37

 }

 }

 }

}

Example response:

{

 "data": {

 "endpoints": {

 "edges": [

{

 "node": {

 "name": "Test-01",

 "id": "12345",

 "sensorReadings": {

 "columns": [

{

 "sensor": {

 "name": "File Exists",

 "params": [

{

 "name": "file",

 "value": "C:\\Windows\\py.exe"

 }

]

 },

 "values": [

 "File does not exist"

]

 }

]

 }

© 2021 Tanium Inc. All Rights Reserved Page 38

 }

 },

{

 "node": {

 "name": "[no results]",

 "id": "54225",

 "sensorReadings": {

 "columns": [

{

 "sensor": {

 "name": "File Exists",

 "params": [

{

 "name": "file",

 "value": "C:\\Windows\\py.exe"

 }

]

 },

 "values": [

 "[no results]"

]

 }

]

 }

 }

 },

{

 "node": {

 "name": "[no results]",

 "id": "65456",

 "sensorReadings": {

 "columns": [

{

 "sensor": {

© 2021 Tanium Inc. All Rights Reserved Page 39

 "name": "File Exists",

 "params": [

{

 "name": "file",

 "value": "C:\\Windows\\py.exe"

 }

]

 },

 "values": [

 "[no results]"

]

 }

]

 }

 }

 }

]

 }

 }

}

Paginated query

The following query retrieves the first five endpoint records after the given cursor.

{

 endpoints(after: "4277520:4", first: 5) {

 edges {

 node {

 name

 id

 ipAddress

 }

 }

© 2021 Tanium Inc. All Rights Reserved Page 40

 pageInfo {

 hasNextPage

 startCursor

 endCursor

 }

 }

}

Example results

{

 "data": {

 "endpoints": {

 "edges": [

{

 "node": {

 "name": "Test-06",

 "id": "6172",

 "ipAddress": "172.20.30.40"

 }

 },

{

 "node": {

 "name": "Test-07",

 "id": "87654",

 "ipAddress": "192.168..1.80"

 }

 },

{

 "node": {

 "name": "Test-14",

 "id": "43584",

 "ipAddress": "10.70.11.44"

 }

© 2021 Tanium Inc. All Rights Reserved Page 41

 },

{

 "node": {

 "name": "Test-03",

 "id": "37233",

 "ipAddress": "[no results]"

 }

 },

{

 "node": {

 "name": "Test-55",

 "id": "12139",

 "ipAddress": "[no results]"

 }

 }

],

 "pageInfo": {

 "hasNextPage": true,

 "startCursor": "4277520:5",

 "endCursor": "4277520:9"

 }

 }

 }

}

Software characteristics query with filter

The following query retrieves endpoints that contain software installed by Deploy, where the package ID is 1.

{

 endpoints {

 edges {

 node {

 ipAddress

© 2021 Tanium Inc. All Rights Reserved Page 42

 isVirtual

 domainName

 os {

 generation

 }

 lastLoggedInUser

 deployedSoftwarePackages(

 filter: {filters: [{op: EQ, path: "id", value: "1"}, {op: EQ, path: "applicability",

value: "Installed"}]}

) {

 id

 }

 }

 }

 }

}

Action examples

Create action (subset of endpoints)

The following mutation deploys an action to increase the verbosity of log levels on Debian endpoints.

{

 createAction(

 action: {description: "Increasing log verbosity level on all debian endpoints for

troubleshooting", target: {targetGroup: "All Debian", platforms: [Linux]}, changeClientSetting:

{name: LOG_VERBOSITY_LEVEL, value: "41"}}

) {

 id

 }

}

Get action details

The following parameterized query retrieves details and any results for an action.

© 2021 Tanium Inc. All Rights Reserved Page 43

query ($id: ID!) {

 lastActionDetails(id: $id) {

 id

 name

 comment

 expireSeconds

 creationTime

 startTime

 expirationTime

 distributeSeconds

 status

 stoppedFlag

 }

 lastActionResults(id: $id) {

 id

 waiting

 downloading

 running

 waitingToRetry

 completed

 expired

 failed

 pendingVerification

 verified

 failedVerification

 }

}

Include the endpoint ID in the QUERY VARIABLES panel:

{

 "id": 12323

}

© 2021 Tanium Inc. All Rights Reserved Page 44

Deploy examples

Deploy a package to all endpoints

The following mutation deploys a package to All Computers.

mutation {

 manageSoftware(

 operation: INSTALL

 softwarePackageID: 2

 start: "2021-10-27T00:00:00Z"

 end: "2021-11-03T00:00:00Z"

 target: {targetGroup: "All Computers"}

) {

 ID

 name

 }

}

Get package details

The following query retrieves multiple fields for all packages.

query PackagesQuery {

 packages {

 items {

 id

 name

 displayName

 command

 commandTimeout

 expireSeconds

 contentSet {

 id

 name

 }

© 2021 Tanium Inc. All Rights Reserved Page 45

 processGroupFlag

 skipLockFlag

 metadata {

 adminFlag

 name

 value

 }

 sourceHash

 sourceHashChangedFlag

 sourceID

 sourceName

 parameters {

 key

 value

 }

 rawParameterDefinition

 parameterDefinition {

 parameterType

 model

 parameters {

 model

 parameterType

 key

 label

 helpString

 defaultValue

 validationExpressions {

 model

 parameterType

 expression

 helpString

 }

 promptText

 heightInLines

© 2021 Tanium Inc. All Rights Reserved Page 46

 maxChars

 values

 restrict

 allowEmptyList

 minimum

 maximum

 stepSize

 snapInterval

 dropdownOptions {

 model

 parameterType

 name

 value

 }

 componentType

 startDateRestriction {

 model

 parameterType

 type

 interval

 intervalCount

 unixTimeStamp

 }

 endDateRestriction {

 model

 parameterType

 type

 interval

 intervalCount

 unixTimeStamp

 }

 startTimeRestriction {

 model

 parameterType

© 2021 Tanium Inc. All Rights Reserved Page 47

 type

 interval

 intervalCount

 unixTimeStamp

 }

 endTimeRestriction {

 model

 parameterType

 type

 interval

 intervalCount

 unixTimeStamp

 }

 allowDisableEnd

 defaultRangeStart {

 model

 parameterType

 type

 interval

 intervalCount

 unixTimeStamp

 }

 defaultRangeEnd {

 model

 parameterType

 type

 interval

 intervalCount

 unixTimeStamp

 }

 separatorText

 }

 }

 verifyExpireSeconds

© 2021 Tanium Inc. All Rights Reserved Page 48

 }

 }

}

Get Deploy packages

The following query retrieves all Deploy packages.

{

 softwarePackages {

 edges {

 node {

 id

 productName

 productVendor

 productVersion

 }

 }

 }

}

Get software deployment status

The following query retrieves the deployment status of all Deploy packages.

{

 softwareDeployment {

 ID

 name

 status {

 completeCount

 downloadCompleteWaitingCount

 downloadingCount

 failedCount

© 2021 Tanium Inc. All Rights Reserved Page 49

 notApplicableCount

 runningCount

 waitingCount

 }

 errors {

 error

 count

 }

 }

}

Direct Connect examples
The following queries and mutations use Direct Connect to connect to a single endpoint, retrieve data, stop a process, and then

close the connection.

Open a connection to an endpoint

The following mutation uses Direct Connect to establish a connection to the endpoint with an ID of 12323. You can retrieve IDs

through the Get endpoints IDs from Tanium Data Service on page 27 query.

Direct Connect connections close after two minutes of inactivity.

mutation {

 openDirectConnection(input: {endpointID: "12323"}) {

 connectionID

 }

}

Example response:

{

 "data": {

 "openDirectConnection": {

© 2021 Tanium Inc. All Rights Reserved Page 50

 "connectionID": "86d9a9ac-0229-481b-9d88-5f1bcb1b177b"

 }

 }

}

Ping the connection to an endpoint

The following mutation retrieves the status for a Direct Connect connection. Use this mutation to check connection details or to

keep the connection active. You need the connectionID that is returned by the mutation to open the connection.

Direct Connect connections close after two minutes of inactivity.

mutation ($connectionID: ID!) {

 pingDirectConnection(input: {connectionID: $connectionID}) {

 result

 }

}

Include the connection ID in the QUERY VARIABLES panel:

{

 "connectionID": "5fc564d6-5767-47fc-abb6-25cba65409d8"

}

Get data from an endpoint

After you establish a connection to an endpoint through Direct Connect, you can query the endpoint for specific information. You

need the connectionID that is returned by the mutation to open the connection. The following query retrieves the CPU usage on

the endpoint:

{

 directConnection(connectionID: "7212763a-20aa-4cdd-a8b2-6b20b3968f2a") {

 performance {

 cpuUsagePercent

© 2021 Tanium Inc. All Rights Reserved Page 51

 }

 }

}

Get process from an endpoint

The following query retrieves the state of the winit.exe process on the endpoint, if it exists. You need the connectionID that is

returned by the mutation to open the connection.

query ($connectionID: ID!) {

 directConnection(connectionID: $connectionID) {

 processes(name: "winit.exe") {

 all {

 pid

 ppid

 name

 commandLine

 userName

 groupName

 memoryResidentBytes

 }

 }

 }

}

Include the connection ID in the QUERY VARIABLES panel:

{

 "connectionID": "5fc564d6-5767-47fc-abb6-25cba65409d8"

}

Get alerts from an endpoint

The following query retrieves alerts from an endpoint. You need the connectionID that is returned by the mutation to open the

connection.

© 2021 Tanium Inc. All Rights Reserved Page 52

query ($connectionID: ID!) {

 directConnection(connectionID: $connectionID) {

 alerts {

 all {

 schema

 key

 type

 ref

 topProcessesExpr

 labels

 pendingAt

 start

 resolvedAt

 leadup

 value {

 name

 value

 values {

 value

 labels

 }

 }

 }

 }

 }

}

Include the connection ID in the QUERY VARIABLES panel:

{

 "connectionID": "5fc564d6-5767-47fc-abb6-25cba65409d8"

}

© 2021 Tanium Inc. All Rights Reserved Page 53

Stop a process on an endpoint

The following mutation stops a process named foo on an endpoint. You need the connectionID that is returned by the mutation

to open the connection.

mutation {

 killProcess(

 input: {connectionID: "7212763a-20aa-4cdd-a8b2-6b20b3968f2a", name: "foo", pid: 1, signal:

SIGKILL}

) {

 result

 }

}

Close connection to an endpoint

The following mutation closes a Direct Connect connection to an endpoint. You need the connectionID that is returned by the

mutation to open the connection.

Direct Connect connections close after two minutes of inactivity.

mutation ($connectionID: ID!) {

 closeDirectConnection(input: {connectionID: $connectionID}) {

 result

 }

}

Include the connection ID in the QUERY VARIABLES panel:

{

 "connectionID": "5fc564d6-5767-47fc-abb6-25cba65409d8"

}

Example response:

© 2021 Tanium Inc. All Rights Reserved Page 54

{

 "data": {

 "closeDirectConnection": {

 "result": true

 }

 }

}

	API Gateway overview
	Query explorer
	Query variables
	Schema reference

	Authentication
	Rate limits
	Root endpoint
	Example cURL syntax
	Pagination
	Cursors
	Connection and edges
	Arguments

	Filters
	Simple filters
	Compound filters
	Negated filters
	Field filters

	Integration with other Tanium products

	Getting started with API Gateway
	Step 1: Review the requirements
	Step 2: Install API Gateway
	Step 3: Install any integrated solutions that use the API Gateway
	Step 4: Grant API Gateway permissions
	Step 5: Test queries through the Tanium™ Console
	Step 6: (Optional) Test queries through cURL
	Step 7: Explore sample queries and mutations

	API Gateway requirements
	Tanium dependencies
	Tanium™ Module Server
	Endpoints
	Host and network security requirements
	Ports
	Security exclusions

	User role requirements

	Installing API Gateway
	Before you begin
	Import API Gateway
	Troubleshoot issues

	Using API Gateway
	Test a query in the Tanium Console

	Troubleshooting API Gateway
	Collect logs
	Queries return unexpected results or errors
	Uninstall API Gateway
	Contact Tanium Support

	Reference: API Gateway examples
	General examples
	Get server time
	Get endpoints
	Get endpoints IDs from Tanium Data Service
	Get rich endpoint data
	Get a set of endpoints
	Unregistered sensor query
	Unregistered parameterized sensor query
	Paginated query
	Software characteristics query with filter

	Action examples
	Create action (subset of endpoints)
	Get action details

	Deploy examples
	Deploy a package to all endpoints
	Get package details
	Get Deploy packages
	Get software deployment status

	Direct Connect examples
	Open a connection to an endpoint
	Ping the connection to an endpoint
	Get data from an endpoint
	Get process from an endpoint
	Get alerts from an endpoint
	Stop a process on an endpoint
	Close connection to an endpoint

	Bookmarks
	query_explorer
	root
	example_syntax
	pagination
	integration
	install
	test_query
	user_roles
	unexpected_results
	support
	general_examples
	Get
	action_examples
	deploy_examples
	dc_examples

